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Abstract. This paper introduces a novel architecture for fully decentralized 
perpetual swaps that bridge the performance gap with centralized venues while 
leveraging Bitcoin's security for final settlement. We present a hybrid execution 
layer combining Solana's high-throughput virtual machine with Bitcoin 
settlement, achieving sub-second cross-venue routing computations. Our 
decentralized sequencer network provides censorship-resistant transaction 
ordering, while finality is secured via Bitcoin anchoring through established 
bridging mechanisms. We formulate an adapted Almgren-Chriss execution 
model optimized for cryptocurrency derivative microstructure and introduce an 
AI-assisted interface using deep reinforcement learning for trade optimization. 
The system incorporates robust risk management for leverage up to 150x, 
balancing capital efficiency with systemic safety. Finally, we establish principles 
for natural language interfaces to enhance usability in complex financial 
domains. Our modular design demonstrates a practical path toward resolving 
the trade-offs between execution speed, settlement security, and true 
decentralization in global derivatives trading. 
 

 
1. Introduction 

Market microstructure is the academic field concerned with the economic forces that influence trades, 
quotes, and prices, and the processes by which transaction prices converge to, or deviate from, 
long-term equilibrium values due to market frictions.1 Within the cryptocurrency domain, no 
instrument is more central to this study than the perpetual swap. Perpetual swaps, or "perps," are 
derivative contracts that allow traders to speculate on asset prices without an expiration date, and they 
have come to dominate the digital asset landscape, accounting for approximately 93% of all crypto 
derivatives trading volume.2 Their trading volumes frequently surpass those of the underlying spot 
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markets, establishing them as primary venues for price discovery and liquidity concentration.3 

The defining feature of these instruments is the funding rate mechanism, a periodic payment 
exchanged between long and short positions, typically every eight hours, which serves to tether the 
contract's price to the underlying spot price.2 This mechanism is a powerful driver of market behavior, 
inducing a characteristic U-shaped pattern in both trading activity and bid-ask spreads within each 
funding cycle as traders position themselves around the payment event.2 The profound influence of 
perpetual contracts extends beyond their own markets; empirical evidence suggests that their 
introduction actively shapes the microstructure of the underlying spot markets. The availability of 
high leverage, the ease of short selling, and continuous 24/7 trading create a highly efficient 
environment for informed traders, which in turn boosts spot market liquidity and price efficiency.2 
However, this efficiency comes at a cost: the very mechanisms that attract sophisticated participants 
also lead to increased trading costs and heightened adverse selection for uninformed traders.2 This 
fundamental trade-off between market efficiency and transaction cost is a central challenge that any 
advanced trading protocol must address. A protocol that can significantly reduce the frictions 
associated with perpetuals trading will not merely capture existing market share but will likely amplify 
these microstructural effects, potentially becoming the dominant global venue for price discovery.3 

 

1.1 DEXs 

The design of decentralized exchanges is constrained by a fundamental challenge that can be termed 
the "Execution Trilemma": the difficulty of simultaneously optimizing for centralized exchange level 
performance, characterized by low latency and high throughput; true decentralization, ensuring 
censorship resistance and global market coverage; and ultimate settlement security on a globally 
recognized, robust ledger. Existing solutions invariably compromise on at least one of these 
dimensions. 
 
High-performance DEXs, particularly those built as application-specific blockchains or "app-chains," 
often achieve their speed by employing a centralized or permissioned sequencer.6 This single entity is 
responsible for ordering transactions, creating a single point of failure and a vector for censorship or 
malicious reordering (MEV), thereby sacrificing decentralization for performance.8 Conversely, 
protocols that prioritize decentralization by settling directly on a base layer like Ethereum often inherit 
its performance limitations, such as high latency and variable transaction fees. These limitations can 
render certain trading strategies, especially those involving high frequency or high leverage, 
economically unviable and competitively disadvantaged compared to their CEX counterparts. This 
architectural tension has left a significant gap in the market for a protocol that can deliver the 
performance of a CEX without compromising on the core tenets of decentralization and security. 
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1.2 Modularity  

This paper posits that the execution trilemma can be resolved through a modular architecture that 
separates the core functions of a trading system, allowing each component to be optimized for its 
specific purpose without compromise.  
 
The proposed protocol comprises three distinct layers: 
 

1.​ Execution Layer: A custom Layer 2 built using the Solana Virtual Machine, engineered for 
parallel transaction processing and sub-75ms computational latency, providing the raw 
performance necessary for a high-frequency, low-latency trading environment. 

2.​ Sequencing Layer: A decentralized, permissionless network of nodes responsible for fairly 
ordering user transactions. This layer provides censorship resistance and mitigates the risks 
associated with centralized sequencers. 

3.​ Settlement Layer: The Bitcoin blockchain, utilized as the ultimate arbiter of state and finality. By 
employing an optimistic rollup design, the protocol anchors its security in the most robust and 
decentralized ledger in existence. 
 

This separation of concerns allows the protocol to achieve CEX-level execution speed on its dedicated 
L2, maintain censorship resistance through its decentralized sequencing layer, and inherit the 
unparalleled security of Bitcoin for final settlement. The subsequent sections will provide the detailed 
mathematical, architectural, and security foundations to substantiate this thesis. 
 
2. Mathematical Foundations 

The foundational model for optimal trade execution is the framework developed by Almgren and 
Chriss, which seeks to find a trading trajectory that minimizes a linear combination of execution costs 
and risk.9  
 
The standard Almgren-Chriss model assumes the unaffected security price Sk​ follows a discrete 
arithmetic random walk, with a permanent market impact term that is a function of the trading rate: 
 

                                        
To apply this framework to the unique microstructure of cryptocurrency perpetual swaps, this model 
must be significantly extended. The high volatility, distinct fee structures, and unique carrying costs of 
perpetuals necessitate a more nuanced formulation.  
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The adapted model must incorporate several crypto-specific factors: 
 

●​ Exchange Fees: A term, ϕ(nk​), representing the taker or maker fees, which are non-trivial and can 
vary based on trading volume and order type.11 

●​ Bid-Ask Spread: A cost component, ϵk​, representing the price paid for liquidity by crossing the 
bid-ask spread, a dominant factor in execution costs on many exchanges.11 

●​ Funding Rates: A stochastic process, fk​, modeling the periodic funding payments that act as a 
significant carrying cost or revenue stream for the duration of the position.2 

●​ High Volatility and Non-Static Drift: The model must accommodate the characteristically high 
volatility (σ) and the presence of strong, time-varying drift (μk​) common in digital assets, which a 
static model fails to capture effectively.11 

 

2.1 Funding Rates 

The linear impact functions often assumed in basic models are an oversimplification. Empirical 
evidence suggests that market impact, particularly in less liquid markets, is better described by a 
non-linear function, such as a power law of the trading rate, h(vk​)=c∣vk​∣δ, where h(⋅) is the temporary 
impact function.9 

 

Furthermore, in a high-frequency environment, latency is not merely a technical inconvenience but a 
quantifiable risk factor. The state of the limit order book (LOB) can change dramatically within 
milliseconds. Therefore, we introduce a latency penalty function, Λ(Δt), which increases the expected 
execution cost based on the time delay Δt between observing a market state and executing a trade. This 
function mathematically formalizes the critical need for the sub-75ms computational performance of 
the protocol's execution layer. 
 
The complete implementation shortfall minimization problem is then formulated as the objective to 
minimize the expectation and variance of the total execution cost. The goal is to find the optimal trade 
list n={n1​,…,nN​} that minimizes: 
 
$$\min_{\mathbf{n}} \left( \mathbb{E}\left + \lambda \text{Var}\left \right)$$ 
 
where λ is the trader's risk aversion parameter.  
 
The realized execution price, S~k​, for a sell order is modeled as: 
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The dynamics of the unaffected price Sk​ are given by: 
$$ S_k = S_{k-1} + \mu_k\tau + \sigma_k\sqrt{\tau}\xi_k - \tau g(v_k) - f_k \cdot 
\mathbb{I}(\text{funding event}) $$ where I(⋅) is an indicator function for funding payment events. 
This comprehensive model provides a more realistic foundation for deriving optimal execution 
strategies in the crypto derivatives market. 
 
2.2 Optimal Execution 

The static optimization of a pre-determined trading trajectory, as in the original Almgren-Chriss 
model, is ill-suited for the highly volatile and reflexive nature of cryptocurrency markets.11 A superior 
approach is to frame the problem dynamically, allowing the trading strategy to adapt to changing 
market conditions in real-time. This is achieved by modeling the optimal execution problem as a 
Markov Decision Process.12 This reformulation represents a paradigm shift from calculating a fixed 
execution path to learning a dynamic, state-aware policy, which is a prerequisite for a truly AI-native 
system. 
 
The MDP is formally defined by the tuple ⟨S,A,P,R,γ⟩: 
 

●​ State Space (S): The state st​∈S is a vector that captures all relevant information at time t. It 
includes the remaining inventory to be executed, the time remaining until the deadline, a 
representation of the current limit order book state, recent realized volatility, and the predicted 
next funding rate. 

●​ Action Space (A): The action at​∈A is the decision made by the agent in state st​. It consists of 
the quantity of contracts to trade in the next time step and the distribution of this quantity 
across different order types and venues.15 

●​ Transition Probability (P): The function P(st+1​∣st​,at​) defines the probability of transitioning to 
state st+1​ after taking action at​ in state st​. This is governed by the stochastic price and LOB 
dynamics defined in the adapted model from Section 2.2. 

●​ Reward Function (R): The reward rt​ received after taking action at​ is defined as the negative 
implementation shortfall over that single step. It captures the immediate execution cost, 
penalizing adverse price movements, market impact, fees, and spread crossing. 

●​ Discount Factor (γ): A factor $\gamma \in $, typically close to 1, which prioritizes immediate 
rewards while still accounting for the total long-term execution cost. 
 

The solution to this MDP is an optimal policy, π∗:S→A, which maps any given market state to the 
action that maximizes the expected cumulative reward. This policy provides a dynamic, adaptive 
trading strategy that can react intelligently to real-time market conditions, a significant improvement 
over static trajectories. This MDP formulation serves as the theoretical foundation for the AI-assisted 
trading agent detailed in Section 5. 
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3. Protocol  

The architecture is a deliberate response to the execution trilemma, separating concerns into three 
specialized layers to achieve performance, true decentralization, and security without compromise. The 
high-leverage nature of the platform places extreme demands on both performance and security; a 
millisecond delay in liquidation processing can be as catastrophic as a settlement layer re-organization. 
This architecture synergistically combines the strengths of different technologies to meet these 
demands. 
 
3.1 Execution Layer 

The execution layer is a custom, application-specific Layer 2 designed for maximum performance, built 
using the Solana Virtual Machine (SVM). The choice of SVM is predicated on its Sealevel runtime, a 
key innovation that enables parallel processing of transactions.17 Unlike single-threaded virtual 
machines like the EVM, where transactions are processed sequentially, Sealevel can execute multiple 
non-conflicting transactions concurrently across all available CPU cores of a validator node.20 

 

This parallelism is achieved because Solana transactions are required to declare upfront all the accounts 
they intend to read from or write to during execution.21 With this information, the scheduler can 
construct a dependency graph and execute all transactions with non-overlapping state access 
requirements in parallel. This architecture is exceptionally well-suited for a derivatives exchange, where 
a large volume of operations, such as trades on different currency pairs, oracle price updates, funding 
rate calculations, and liquidations of independent positions, can be processed simultaneously, 
dramatically increasing throughput and reducing block processing latency.17 

 

Public Solana network benchmarks demonstrate block times of approximately 75ms and sustained, 
real-world throughput of 102,000-104,000 transactions per second (TPS) under heavy load.24 As a 
dedicated L2, our execution layer can be further optimized, stripping away unnecessary 
general-purpose functionality to achieve the target of sub-50ms latency for complex internal 
computations like cross-venue order routing and multi-position risk updates. This layer serves as the 
"fast path" for all time-sensitive operations, while transaction data is batched for subsequent ordering 
and settlement. 
 
3.2 Sequencer 

To counteract the centralization and censorship risks inherent in many L2 designs that rely on a single 
sequencer 6, our protocol incorporates a dedicated, decentralized sequencing layer. This layer's sole 
responsibility is to receive transactions from users, agree on a canonical ordering, and assemble these 
transactions into batches that are then passed to the settlement layer. 
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The architecture of this layer is inspired by emerging shared sequencer networks such as Astria and 
Espresso.8 It consists of a permissionless set of sequencer nodes that anyone can join by staking a 
protocol-native token. These nodes operate a Byzantine Fault Tolerant consensus protocol, such as 
CometBFT, to agree on the order and content of each batch.8 The right to propose a new batch rotates 
among the staked nodes, preventing any single entity from having a persistent monopoly on 
transaction inclusion and thus ensuring strong censorship resistance and liveness for the system.8 This 
layer is also the critical point for implementing front-running mitigation, as it will enforce a fair 
ordering policy on the encrypted transaction intents it receives, a process detailed in Section 4.1. 
 
3.3 Settlement 

The final and most critical layer provides settlement security by anchoring the protocol's state to the 
Bitcoin blockchain. The choice of Bitcoin is motivated by its unmatched security budget, 
decentralization, and historical liveness, making it the ideal foundation for a system intended to secure 
substantial value.30 The mechanism for this connection is an optimistic rollup.6 Transaction data from 
the execution layer is batched by the sequencing layer and posted to the Bitcoin blockchain. The state 
transitions computed on the L2 are assumed to be correct by default, the "optimistic" assumption, 
which allows for high throughput without waiting for direct on-chain verification of every 
computation.34 

 

The core innovation of this layer is the method for enforcing the validity of these state transitions. We 
propose using a framework inspired by BitVM to enable the verification of fraud proofs on Bitcoin 
without requiring a consensus-breaking hard fork.36  
 
This system operates on a prover-verifier model: 
 

●​ Provers: A set of L2 operators are responsible for executing transactions and posting the new 
state root to Bitcoin, along with a bond. In doing so, they make a verifiable claim that the state 
transition was valid. 

●​ Verifiers: Any party running a full node of our L2 can act as a verifier. If a verifier detects an 
invalid state transition, they can initiate a challenge. 

●​ Challenge-Response Protocol: The challenge triggers an interactive game on the Bitcoin 
blockchain, constructed using a pre-signed set of transactions and a large Taproot tree. This 
game allows the verifier to force the prover to reveal the specific, atomic computational step that 
was executed incorrectly.36 

●​ Punishment: If the prover fails to correctly respond to the challenge or is proven to have 
equivocated, their bond is slashed on the Bitcoin L1. This on-chain, economic punishment 
serves as the fraud proof, allowing the L2 network to disregard the invalid block and revert to 
the previous valid state. 
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To overcome the two-party limitation of the original BitVM proposal, this architecture incorporates 
concepts from BitVM 2, which enables permissionless verification.39 This enhancement means that any 
observer, not just a pre-defined set of verifiers, can initiate a challenge. This open verification model 
drastically improves the protocol's security and decentralization, as an attacker would need to be 
confident that no single honest party in the world would detect their fraud. 
 
4.  Security 

To provide execution quality that rivals centralized exchanges, the protocol is designed not just as an 
isolated liquidity pool but as a sophisticated aggregation engine. The optimal execution algorithm, 
derived from the mathematical framework in Section 2, will intelligently route user orders across both 
the protocol's native order book and other compatible on-chain liquidity venues. This ensures that 
trades are filled at the best possible price by tapping into a wider pool of liquidity. 
 
A primary challenge in on-chain trading is the prevalence of Miner Extractable Value (MEV), 
particularly front-running and sandwich attacks, where malicious actors exploit their view of pending 
transactions to profit at the expense of users.40 Our protocol implements a robust, two-tiered defense 
against such manipulation. 
 
First, users submit their trading intentions as encrypted payloads. This practice, known as an encrypted 
mempool, prevents MEV searchers and potentially malicious sequencers from inspecting the content 
of transactions, such as the asset, size, direction, and slippage tolerance, before they are ordered.43 This 
information asymmetry is the root cause of most MEV, and encryption effectively eliminates it at the 
source. 
 
Second, to prevent ordering manipulation based on other metadata, the protocol enforces fair ordering 
through a "commit-reveal" scheme. The decentralized sequencers must first come to a consensus on the 
order of a block of encrypted transactions. Only after this order has been finalized and immutably 
committed does a distributed committee of nodes collaboratively generate the decryption key. This is 
achieved using a threshold cryptosystem, where the private key is sharded among the committee 
members, and a threshold number of them must cooperate to reconstruct it.40 This cryptographic 
dependency ensures that no single party can both see the content of transactions and determine their 
order, making intelligent front-running impossible.47 To further harden the system against 
high-frequency attacks, a Verifiable Delay Function (VDF) is employed to introduce a provable, 
un-parallelizable time delay between the production of consecutive blocks, ensuring a minimum time 
for information propagation and leveling the playing field for all participants.48 
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4.1 Oracle 

The provision of 150x leverage imposes extreme requirements on the protocol's oracle system. In such 
an environment, minor price fluctuations can trigger liquidations, making the accuracy, frequency, and 
latency of price updates a matter of systemic solvency. Traditional oracle solutions, which update 
on-chain prices on a slow, periodic basis, are fundamentally inadequate and would introduce 
unacceptable risk. 
 
Our protocol's oracle architecture is designed for this high-stakes environment. It will be a hybrid 
system that leverages the robust, decentralized data aggregation of established oracle networks like 
Chainlink to source high-quality price feeds from a wide array of off-chain exchanges and data 
providers.30 These feeds will be ingested directly by nodes on the high-performance SVM L2. On this 
execution layer, the price data can be updated, cross-referenced, and validated at sub-second intervals.  
 
The L2 itself will perform a final, on-chain aggregation and sanity check before the price is used to 
mark user positions to market and trigger liquidations. This design minimizes the critical latency 
between a price change occurring in the broader market and that change being acted upon by the 
protocol's risk engine. 
 
4.2 Risk Management 

Maintaining protocol solvency with leverage as high as 150x requires a mathematically rigorous and 
conservative risk management framework. This framework encompasses the measurement of risk, the 
dynamic calculation of margin requirements, and the continuous stress testing of the system's 
backstops. 
 
The protocol will eschew the widely used but flawed Value at Risk (VaR) metric. VaR merely provides 
a loss threshold for a given probability but fails to quantify the magnitude of losses that exceed this 
threshold. Furthermore, it is not a coherent risk measure, meaning it can discourage diversification, and 
its optimization is often an ill-posed problem for portfolios containing non-linear instruments like 
derivatives.51 Instead, the core risk metric will be Conditional Value at Risk (CVaR), also known as 
Expected Shortfall. CVaR measures the expected loss in the tail of the distribution—specifically, the 
average loss given that the loss has already exceeded the VaR threshold. CVaR is a coherent risk measure 
and is far better suited to capturing the extreme tail risk characteristic of volatile cryptocurrency 
markets.51 

 

Margin requirements for user positions will not be static. They will be calculated dynamically based on 
the CVaR of each user's entire portfolio. This calculation will use advanced statistical models that 
account for the empirically observed properties of crypto asset returns, such as heavy tails and 
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asymmetry, by employing distributions like the stable Paretian distribution rather than assuming 
normality.56 

 

Finally, the protocol's insurance fund, the ultimate backstop against losses from liquidations that 
execute below the bankrupt price, will be continuously evaluated through a rigorous program of stress 
testing and scenario analysis.58 A series of severe but plausible market scenarios will be simulated, 
including multi-standard-deviation price shocks, the de-pegging of major stablecoins, and periods of 
extreme, sustained volatility. These simulations will assess the impact on the system's solvency and 
ensure that the insurance fund is adequately capitalized to withstand such events, thereby protecting 
solvent users from socialized losses.61 

 

5. Human-Computer Interaction Layer 

The protocol's AI-native design is realized through an AI assistant that helps users formulate and 
execute optimal trading strategies. This system is a direct implementation of the solution to the 
Markov Decision Process (MDP) formulated in Section 2.3. The core methodology employed is Deep 
Reinforcement Learning, a technique that excels at solving complex, sequential decision-making 
problems in dynamic environments without requiring a complete, analytical model of the underlying 
market dynamics.63 

 

A DRL agent will be trained in a high-fidelity simulation environment built from historical and 
real-time limit order book data. The agent's objective is to learn an optimal policy, π∗, that maps 
market states to trading actions to maximize the expected cumulative reward, which is defined as the 
negative of the total implementation shortfall. State-of-the-art policy gradient algorithms, such as 
Proximal Policy Optimization  or Deep Deterministic Policy Gradient, will be used for training, as they 
have demonstrated strong performance in similar financial applications.66 The output of the trained 
agent will not be automated trading, but rather a set of actionable recommendations presented to the 
user through the interface, such as, "I recommend executing 20% of your order now with market orders 
to capture current liquidity, and placing limit orders for the next 30% at price levels X and Y to 
minimize impact." This approach keeps the user in control while benefiting from the AI's complex 
optimization capabilities. 
 
5.1 Design Principles 

The Natural Language Interface (NLI) is a primary gateway for users to interact with the protocol. 
However, in a high-leverage trading environment, the interface is not merely a tool for convenience; it 
is a safety-critical component where ambiguity or misunderstanding can lead to catastrophic financial 
loss. Its design must be grounded in established Human-Computer Interaction (HCI) research to be 
safe, trustworthy, and effective. 
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First, the design must acknowledge the significant trust deficit that exists between users and AI systems 
in financial contexts. Studies show that a majority of individuals still overwhelmingly trust human 
financial advisors over AI, especially for complex and personal decisions.68 User trust is a multi-faceted 
construct influenced by socio-ethical considerations , technical features , and user characteristics .69 
Therefore, the NLI's design must prioritize building and calibrating this trust. 
 
The design will adapt core HCI principles to this safety-critical domain.70 Unlike consumer 
applications, where "ease of use" might be the primary goal, in this context, safety, clarity, and the 
prevention of error take precedence.72 The interface must be designed for expert users engaging in 
irreversible, high-consequence actions.72  
 
The following core design patterns will be implemented: 
 

●​ Explicit Confirmation: No action that incurs financial risk (e.g., opening a position, adding 
leverage, submitting an order) will be executed without an explicit, multi-step confirmation 
process. The NLI will summarize the intended action and its most critical risk parameters (e.g., 
"You are about to submit a market order to buy 10 BTC-PERP with 150x leverage. Your 
estimated liquidation price will be $68,550.45. This action is irreversible. Please type 
'CONFIRM' to proceed."). 

●​ Explainability: The AI cannot operate as an opaque "black box," as this is a known barrier to 
user trust.69 When the AI-assistant proposes a strategy, the NLI must provide a clear, concise 
rationale. For example: "I suggest splitting the order over the next 15 minutes because the order 
book is currently thin, and a single large market order would likely result in over 0.5% slippage." 

●​ Scoping and Disambiguation: Natural language is inherently ambiguous. The NLI must be 
designed to robustly handle this. If a user command is imprecise, the system will not make an 
assumption. Instead, it will engage in a disambiguation dialogue: "How much Bitcoin would 
you like to buy? What level of leverage would you like to use?" 

●​ Progressive Disclosure: To avoid overwhelming the user with information, the interface will 
present the most critical data by default while allowing the user to easily query for more granular 
details. For instance, the main view might show the current funding rate, but the user can ask, 
"Show me the historical funding rate for the past 30 days" to receive a detailed chart. 

●​ Trust Calibration: A crucial safety feature is to prevent user over-trust in the AI. The interface 
must be designed to manage user expectations and communicate the inherent uncertainty of 
financial markets and AI predictions.73 This can be achieved by surfacing confidence intervals 
for predictions or occasionally reminding the user of the limitations of the model. 

 
 
By treating the NLI as a core component of the system's risk management apparatus, its design can 
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move beyond simple convenience to become a powerful tool for preventing user error and fostering a 
safe, trusted trading environment. 
 
6. Performance  

The protocol's performance is a direct result of its modular architecture, with each layer contributing 
to the overall metrics of latency, throughput, and finality. 
 

●​ Execution Latency: The end-to-end latency for a user's trade can be modeled as the sum of several 
components: Ltotal​=Lnetwork​+Lsequence​+Lexecute​+Lconfirm​. 

○​ Lnetwork​: The network latency for the user's transaction to reach the sequencer network. 
○​ Lsequence​: The time required for the decentralized sequencer network to reach BFT 

consensus on a batch of transactions. 
○​ Lexecute​: The core computational latency on the SVM L2. Leveraging Solana's parallel 

processing architecture and performance benchmarks 25, this component, which includes 
order routing, matching, and risk checks, is projected to be consistently below the 75ms 
target. 

○​ Lconfirm​: The network latency for the execution confirmation to return to the user.​
The dominant factor for the user's perceived "fast path" confirmation will be the 
sequencer and execution latency, which is expected to be in the low hundreds of 
milliseconds, competitive with centralized venues. 
 

●​ Throughput: The system's maximum sustainable Transactions Per Second (TPS) is primarily 
constrained by the consensus and data propagation capacity of the decentralized sequencer 
network and the data availability bandwidth of the Bitcoin L1. The SVM execution layer is not 
anticipated to be the bottleneck, given its ability to scale with available CPU cores and process 
thousands of transactions per second.75 

●​ Settlement Finality: The protocol offers two levels of finality. A fast, probabilistic finality is 
achieved once a transaction is included in a batch by the sequencer network and executed on the 
L2. This is sufficient for most trading interactions. Absolute, irreversible finality is achieved on 
the Bitcoin blockchain after the optimistic rollup's challenge period has elapsed without a 
successful fraud proof. 
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7. Conclusion 

This paper has presented a comprehensive blueprint for a next-generation decentralized perpetual 
swaps exchange. By employing a modular, three-layer architecture, the protocol systematically 
addresses the execution trilemma that constrains existing platforms. The combination of a 
high-performance SVM execution layer, a censorship-resistant decentralized sequencing layer, and the 
unparalleled security of the Bitcoin blockchain for settlement creates a system that does not 
compromise on speed, decentralization, or security. 
 
The key contributions of this work are fourfold. First, we have proposed a novel system architecture 
that synergistically integrates leading-edge technologies from different ecosystems. Second, we have 
formulated a rigorous mathematical adaptation of the Almgren-Chriss optimal execution model for 
the specific microstructure of cryptocurrency derivatives and framed it as a Markov Decision Process. 
Third, we have outlined a coherent risk management framework based on Conditional Value at Risk 
and continuous stress testing, capable of safely supporting industry-leading 150x leverage. Finally, we 
have established a set of HCI principles for designing a safe and trustworthy natural language interface 
for this complex and safety-critical financial domain. 
 
Future research can extend this work in several promising directions. Further research into more 
efficient and trust-minimized multi-party fraud-proof schemes could reduce reliance on the initial set 
of L2 operators.76 The AI-assisted trading agent could be enhanced with more sophisticated RL 
techniques, such as multi-agent reinforcement learning, to model the strategic behavior of other 
market participants and create more robust execution policies. Lastly, the application of formal 
verification methods to the protocol's smart contracts and, critically, to the logic of the NLI, could 
provide mathematical guarantees of system safety and correctness, further enhancing user trust and 
protocol security. 
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